Hecke algebras arise in representation theory as endomorphism algebras of induced representations. One of the most important classes of Hecke algebras is related to representations of reductive algebraic groups over p-adic or finite fields. In 1979, in the simplest (equal parameter) case of such Hecke algebras, Kazhdan and Lusztig discovered a particular basis (the KL-basis) in a Hecke algebra, which is very important in studying relations between representation theory and geometry of the corresponding flag varieties. It turned out that the elements of the KL-basis also possess very interesting combinatorial properties. In the present book, the author extends the theory of the KL-basis to a more general class of Hecke algebras, the so-calle...
. We give a representation of the Hecke algebra on the linear space spanned by a family of rational ...
International audienceWe introduce graded Hecke algebras H based on a (possibly disconnected) comple...
11 pages, Proceedings of International Workshop "Supersymmetries and Quantum Symmetries", Dubna, 200...
A conjecture of Bonnafé, Geck, Iancu, and Lam parametrizes Kazhdan-Lusztig left cells for unequal-pa...
Hecke algebras associated to reductive groups over a finite field Fq were introduced in order to dec...
1.The first part of this thesis treats Hecke algebras for linear algebraic groups over either a numb...
1.The first part of this thesis treats Hecke algebras for linear algebraic groups over either a numb...
Contains fulltext : 93989.pdf (preprint version ) (Open Access
The modular representation theory of Iwahori-Hecke algebras and this theory's connection to groups o...
AbstractLetGbe a finite group of Lie type and letkbe a field of characteristicdistinctfrom the defin...
summary:[For the entire collection see Zbl 0742.00067.]\par In the first part some general results o...
summary:[For the entire collection see Zbl 0742.00067.]\par In the first part some general results o...
1.1. The purpose of this article is to determine the representation type for all of the Hecke algebr...
Let H be the generic Hecke algebra corresponding to an affine Weyl group and unequal parameters. We ...
We describe an algorithm for computing the $p$-canonical basis of the Hecke algebra, or one of its a...
. We give a representation of the Hecke algebra on the linear space spanned by a family of rational ...
International audienceWe introduce graded Hecke algebras H based on a (possibly disconnected) comple...
11 pages, Proceedings of International Workshop "Supersymmetries and Quantum Symmetries", Dubna, 200...
A conjecture of Bonnafé, Geck, Iancu, and Lam parametrizes Kazhdan-Lusztig left cells for unequal-pa...
Hecke algebras associated to reductive groups over a finite field Fq were introduced in order to dec...
1.The first part of this thesis treats Hecke algebras for linear algebraic groups over either a numb...
1.The first part of this thesis treats Hecke algebras for linear algebraic groups over either a numb...
Contains fulltext : 93989.pdf (preprint version ) (Open Access
The modular representation theory of Iwahori-Hecke algebras and this theory's connection to groups o...
AbstractLetGbe a finite group of Lie type and letkbe a field of characteristicdistinctfrom the defin...
summary:[For the entire collection see Zbl 0742.00067.]\par In the first part some general results o...
summary:[For the entire collection see Zbl 0742.00067.]\par In the first part some general results o...
1.1. The purpose of this article is to determine the representation type for all of the Hecke algebr...
Let H be the generic Hecke algebra corresponding to an affine Weyl group and unequal parameters. We ...
We describe an algorithm for computing the $p$-canonical basis of the Hecke algebra, or one of its a...
. We give a representation of the Hecke algebra on the linear space spanned by a family of rational ...
International audienceWe introduce graded Hecke algebras H based on a (possibly disconnected) comple...
11 pages, Proceedings of International Workshop "Supersymmetries and Quantum Symmetries", Dubna, 200...