In dieser Arbeit beschäftigen wir uns mit der Frage, wie Regularisierungsparameter bei der Tikhonov-Regularisierung von inversen Problemen anhand von gegebenen Datengewählt werden können. Dies führt uns zu einem zweistufigen Optimierungsproblem. Hierbei entspricht das Optimierungsproblem auf der niedrigeren Stufe dem Tikhonov-regularisierten inversen Problem, parametrisiert in den Regularisierungsparametern. Im höherstufigen Problem bestimmen wir, welche Regularisierungsparameter zu den besten Resultaten geführt haben, wobei wir annehmen die exakte Lösung des inversen Prob-lems zu kennen. Wir leiten Bedingungen her, die die Lösbarkeit dieses zweistufen Optimierungsproblems garantieren und verifizieren diese Bedingungen für einige Standardbe...
AbstractWe present three cubically convergent methods for choosing the regularization parameters in ...
Published in at http://dx.doi.org/10.1214/07-EJS115 the Electronic Journal of Statistics (http://www...
Ill-posed inverse problems arise in many fields of science and engineering. The ill-conditioning and...
Variational regularization is commonly used to solve linear inverse problems, and involves augmentin...
summary:We give a derivation of an a-posteriori strategy for choosing the regularization parameter i...
Inverse problems arise in many applications in science and engineering. They are characterized by th...
Inverse optimization refers to the inference of unknown parameters of an optimization problem based ...
We explore anisotropic regularisation methods in the spirit of [Holler & Kunisch, 14]. Based on grou...
Multiplicative regularization solves a linear inverse problem by minimizing the product of the norm ...
We consider a bilevel optimisation approach for parameter learning in higher-order total variation i...
University of Minnesota Ph.D. dissertation. March 2011. Advisor:Prof. Fadil Santosa. Major: Mathemat...
Tikhonov regularization is a cornerstone technique in solving inverse problems with applications in ...
We introduce and study a mathematical framework for a broad class of regularization functionals for ...
In this paper, we propose a new strategy for a priori choice of reg-ularization parameters in Tikhon...
Most linear inverse problems require regularization to ensure that robust and meaningful solutions c...
AbstractWe present three cubically convergent methods for choosing the regularization parameters in ...
Published in at http://dx.doi.org/10.1214/07-EJS115 the Electronic Journal of Statistics (http://www...
Ill-posed inverse problems arise in many fields of science and engineering. The ill-conditioning and...
Variational regularization is commonly used to solve linear inverse problems, and involves augmentin...
summary:We give a derivation of an a-posteriori strategy for choosing the regularization parameter i...
Inverse problems arise in many applications in science and engineering. They are characterized by th...
Inverse optimization refers to the inference of unknown parameters of an optimization problem based ...
We explore anisotropic regularisation methods in the spirit of [Holler & Kunisch, 14]. Based on grou...
Multiplicative regularization solves a linear inverse problem by minimizing the product of the norm ...
We consider a bilevel optimisation approach for parameter learning in higher-order total variation i...
University of Minnesota Ph.D. dissertation. March 2011. Advisor:Prof. Fadil Santosa. Major: Mathemat...
Tikhonov regularization is a cornerstone technique in solving inverse problems with applications in ...
We introduce and study a mathematical framework for a broad class of regularization functionals for ...
In this paper, we propose a new strategy for a priori choice of reg-ularization parameters in Tikhon...
Most linear inverse problems require regularization to ensure that robust and meaningful solutions c...
AbstractWe present three cubically convergent methods for choosing the regularization parameters in ...
Published in at http://dx.doi.org/10.1214/07-EJS115 the Electronic Journal of Statistics (http://www...
Ill-posed inverse problems arise in many fields of science and engineering. The ill-conditioning and...