$H_2$-optimization removes the stochastics from LQG optimization (Doyle, Glover, Khargonekar, and Francis, 1989.) It relies on the observation that the customary signal-based mean square criterion of LQG optimization may be re-interpreted as a system norm (in particular, the 2-norm), without direct reference to the signals that are involved. A moment's thought, however, reveals that the $H_2$-paradigm allows the consideration of design problems that the conventional LQG formulation and solution does not permit. These extended problems include quite naturally frequency dependent weighting functions and colored measurement noise Although LQG optimization has been generalized to include these "singular" problems a long time ago these results a...