A key aspect of artificial intelligence is the ability to learn from experience. If examples of correct solutions exist, supervised learning techniques can be used to predict what the correct solution will be for future observations. However, often such examples are not readily available. The field of reinforcement learning investigates methods that can learn from experience when no examples of correct behavior are given, but a reinforcement signal is supplied to the learning entity. Many problems fit this problem description. In games, the reinforcement signal might be whether or not the game was won. In economic settings, the reinforcement can represent the profit or loss that is eventually made. Furthermore, in robotics it is often easie...