We review an event-based simulation approach which reproduces the statistical distributions of quantum physics experiments by generating detection events one-by-one according to an unknown distribution and without solving a wave equation. Einstein-Podolsky-Rosen-Bohm laboratory experiments are used as an example to illustrate the applicability of this approach. It is shown that computer experiments that employ the same post-selection procedure as the one used in laboratory experiments produce data that is in excellent agreement with quantum theory