Linear complementarity systems are used to model discontinuous dynamical systems such as networks with ideal diodes and mechanical systems with unilateral constraints. In these systems mode changes are modeled by a relation between nonnegative, complementarity variables. We consider approximating systems obtained by replacing this non-Lipschitzian relation with a Lipschitzian function and investigate the convergence of the solutions of the approximating system to those of the ideal system as the Lipschitzian characteristic approaches to the (non-Lipschitzian) complementarity relation. It is shown that this kind of convergence holds for linear passive complementarity systems for which solutions are known to exist and to be unique. Moreover, ...