Dit proefschrift bestaat uit twee delen. In het eerste deel beschrijven we hoe de op prototypen gebaseerde classificator LVQ uitgebreid kan worden door gebruik te maken van maten uit de informatie theorie. Daarnaast vergelijken we verschillende manieren van datarepresentatie in deze LVQ configuratie, in dit geval histogrammen van foto’s, SIFT- en SURF-kenmerken. We tonen hoe hiervoor een enkele gecombineerde afstandsmaat kan worden geformuleerd, door de afzonderlijke afstandsmaten samen te nemen. In het tweede deel onderzoeken we het vinden van causale verbanden en toepassingen op problemen die uit het leven zijn gegrepen. Daarnaast verkennen we de combinatie met relevantie leren in LVQ en tonen we enkele toepassingen