The C-14/C abundance in CO2((CO2)-C-14) promises to provide useful constraints on regional fossil fuel emissions and atmospheric transport through the large gradients introduced by anthropogenic activity. The currently sparse atmospheric (CO2)-C-14 monitoring network can potentially be augmented by using plant biomass as an integrated sample of the atmospheric (CO2)-C-14. But the interpretation of such an integrated sample requires knowledge about the daytoday CO2 uptake of the sampled plants. We investigate here the required detail in daily plant growth variations needed to accurately interpret regional fossil fuel emissions from annual plant samples. We use a crop growth model driven by daily meteorology to reproduce daily fixation of (CO...