The marketing literature suggests several phenomena that may contribute to the shape of the relationship between sales and price discounts. These phenomena can produce severe nonlinearities and interactions in the curves, and we argue that those are best captured with a flexible approach. Since a fully nonparametric regression model suffers from the curse of dimensionality, we propose a semiparametric regression model. Store-level sales over time is modeled as a nonparametric function of own-and cross-item price discounts, and a parametric function of other predictors (all indicator variables). We compare the predictive validity of the semiparametric model with that of two parametric benchmark models and obtain better performance on average...