This paper addresses the issue of structure-preserving discretization of open distributed-parameter systems with Hamiltonian dynamics. Employing the formalism of discrete exterior calculus, we introduce simplicial Dirac structures as discrete analogues of the Stokes-Dirac structure and demonstrate that they provide a natural framework for deriving finite-dimensional port-Hamiltonian systems that emulate their infinite-dimensional counterparts. This approach of discrete differential geometry, rather than discretizing the partial differential equations, allows to first discretize the underlying Stokes-Dirac structure and then to impose the corresponding finite-dimensional port-Hamiltonian dynamics. In this manner, we preserve a number of impo...