In this article, we discuss a parallel implementation of efficient algorithms for computation of Legendre polynomial transforms and other orthogonal polynomial transforms. We develop an approach to the Driscoll-Healy algorithm using polynomial arithmetic and present experimental results on the accuracy, efficiency, and scalability of our implementation. The algorithms were implemented in ANSI C using the BSPlib communications library. We also present a new algorithm for computing the cosine transform of two vectors at the same time
A fast, simple, and numerically stable transform for converting between Legendre and Chebyshev coeff...
Abstract. A fast, simple, and numerically stable transform for converting between Legendre and Cheby...
Abstract. A polynomial transform is the multiplication of an input vector x ∈ Cn by a matrix Pb;α ∈ ...
In this article, we discuss a parallel implementation of efficient algorithms for computation of Leg...
In this article we discuss a parallel implementation of efficient algorithms for computation of Lege...
In this article, we discuss a parallel implementation of efficient algorithms for computation of Leg...
Abstract. In this article, we discuss a parallel implementation of efficient algorithms for compu-ta...
Abstract In this article we discuss a parallel implementation of ecient algorithms for computation...
We discuss a parallel implementation of a fast algorithm for the discrete polynomial Legendre transf...
We discuss a parallel implementation of a fast algorithm for the discrete poly-nomial Legendre trans...
We present a parallel Fast Legendre Transform (FLT) based on the Driscol-Healy algorithm with comput...
In this article we discuss a parallel implementation of efficient algorithms for computation of Lege...
This paper presents a parallel implementation of the discrete Legendre transform using SIMD machines...
A self-contained set of algorithms is proposed for the fast evaluation of Legendre polynomials of ar...
A self-contained set of algorithms is proposed for the fast evaluation of Legendre polynomials of ar...
A fast, simple, and numerically stable transform for converting between Legendre and Chebyshev coeff...
Abstract. A fast, simple, and numerically stable transform for converting between Legendre and Cheby...
Abstract. A polynomial transform is the multiplication of an input vector x ∈ Cn by a matrix Pb;α ∈ ...
In this article, we discuss a parallel implementation of efficient algorithms for computation of Leg...
In this article we discuss a parallel implementation of efficient algorithms for computation of Lege...
In this article, we discuss a parallel implementation of efficient algorithms for computation of Leg...
Abstract. In this article, we discuss a parallel implementation of efficient algorithms for compu-ta...
Abstract In this article we discuss a parallel implementation of ecient algorithms for computation...
We discuss a parallel implementation of a fast algorithm for the discrete polynomial Legendre transf...
We discuss a parallel implementation of a fast algorithm for the discrete poly-nomial Legendre trans...
We present a parallel Fast Legendre Transform (FLT) based on the Driscol-Healy algorithm with comput...
In this article we discuss a parallel implementation of efficient algorithms for computation of Lege...
This paper presents a parallel implementation of the discrete Legendre transform using SIMD machines...
A self-contained set of algorithms is proposed for the fast evaluation of Legendre polynomials of ar...
A self-contained set of algorithms is proposed for the fast evaluation of Legendre polynomials of ar...
A fast, simple, and numerically stable transform for converting between Legendre and Chebyshev coeff...
Abstract. A fast, simple, and numerically stable transform for converting between Legendre and Cheby...
Abstract. A polynomial transform is the multiplication of an input vector x ∈ Cn by a matrix Pb;α ∈ ...