A space–time discontinuous Galerkin (DG) finite element method for nonlinear water waves in an inviscid and incompressible fluid is presented. The space–time DG method results in a conservative numerical discretization on time dependent deforming meshes which follow the free surface evolution. The algorithm is higher order accurate, both in space and time, and closely related to an arbitrary Lagrangian Eulerian (ALE) approach. A detailed derivation of the numerical algorithm is given including an efficient procedure to solve the nonlinear algebraic equations resulting from the space–time discretization. Numerical examples are shown on a series of model problems to demonstrate the accuracy and capabilities of the method
A space-time discontinuous Galerkin (DG) nite element method is presented for the shallow water equ...
A novel finite element discretization for nonlinear potential flow water waves is presented. Startin...
A method is developed for the simulation of nonlinear wave propagation over long times. The approach...
A space-time discontinuous Galerkin (DG) finite element method for nonlinear water waves in an invis...
We discuss a new higher order accurate discontinuous Galerkin finite element method for non-linear f...
An overview is given of a discontinuous Galerkin finite element method for linear free surface water...
A new variational finite element method is developed for nonlinear free surface gravity water waves ...
A new variational finite element method is developed for nonlinear free surface gravity water waves ...
In this paper, we discuss a discontinuous Galerkin finite (DG) element method for linear free surfac...
We introduce a space–time discontinuous Galerkin (DG) finite element method for the incompressible N...
A space–time discontinuous Galerkin (DG) discretization is presented for the (rotating) shallow wate...
This article presents a space–time discontinuous Galerkin (DG) finite element discretization of the ...
A space-time discontinuous Galerkin (DG) discretization is presented for the (rotating) shallow wate...
Flooding and drying in space or space-time discontinuous Galerkin (DG) discretizations provides an a...
We present a higher order accurate discontinuous Galerkin finite element method for the simulation o...
A space-time discontinuous Galerkin (DG) nite element method is presented for the shallow water equ...
A novel finite element discretization for nonlinear potential flow water waves is presented. Startin...
A method is developed for the simulation of nonlinear wave propagation over long times. The approach...
A space-time discontinuous Galerkin (DG) finite element method for nonlinear water waves in an invis...
We discuss a new higher order accurate discontinuous Galerkin finite element method for non-linear f...
An overview is given of a discontinuous Galerkin finite element method for linear free surface water...
A new variational finite element method is developed for nonlinear free surface gravity water waves ...
A new variational finite element method is developed for nonlinear free surface gravity water waves ...
In this paper, we discuss a discontinuous Galerkin finite (DG) element method for linear free surfac...
We introduce a space–time discontinuous Galerkin (DG) finite element method for the incompressible N...
A space–time discontinuous Galerkin (DG) discretization is presented for the (rotating) shallow wate...
This article presents a space–time discontinuous Galerkin (DG) finite element discretization of the ...
A space-time discontinuous Galerkin (DG) discretization is presented for the (rotating) shallow wate...
Flooding and drying in space or space-time discontinuous Galerkin (DG) discretizations provides an a...
We present a higher order accurate discontinuous Galerkin finite element method for the simulation o...
A space-time discontinuous Galerkin (DG) nite element method is presented for the shallow water equ...
A novel finite element discretization for nonlinear potential flow water waves is presented. Startin...
A method is developed for the simulation of nonlinear wave propagation over long times. The approach...