The paper deals with eigenvalue estimates for block incomplete fac- torization methods for symmetric matrices. First, some previous results on upper bounds for the maximum eigenvalue of preconditioned matrices are generalized to each eigenvalue. Second, upper bounds for the maximum eigenvalue of the preconditioned matrix are further estimated, which presents a substantial im- provement of earlier results. Finally, the results are used to estimate bounds for every eigenvalue of the preconditioned matrices, in particular, for the maximum eigenvalue, when a modified block incomplete factorization is used to solve an elliptic equation with variable coefficients in two dimensions. The analysis yields a new upper bound of type γh−1 for the condit...
In this chapter, we give a brief overview of a particular class of preconditioners known as incomple...
AbstractWe propose new block incomplete factorization preconditioners for a symmetric block-tridiago...
AbstractA considerable interest has been devoted to block matrix incomplete factorization preconditi...
The paper deals with eigenvalue estimates for block incomplete fac- torization methods for symmetric...
Eigenvalue and condition number estimates for preconditioned iteration matrices provide the informat...
AbstractEigenvalue and condition number estimates for preconditioned iteration matrices provide the ...
AbstractThe paper is devoted to the conditioning analysis of modified block incomplete factorization...
AbstractWe derive simple analytical upper bounds on the spectral condition number associated with th...
AbstractWe improve the conditioning analysis of modified block incomplete factorizations of Stieltje...
This paper is dedicated to the memory of Fred Howes Abstract. We present support theory, a set of te...
We consider symmetric saddle point matrices. We analyze block preconditioners based on the knowledge...
AbstractIn the work of solving a uniformly elliptic differential equations Au:=−Δu+a1ux+a2uy+a0u=f i...
A new multilevel preconditioner is proposed for the iterative solution of linear systems whose coeff...
. In this chapter, we give a brief overview of a particular class of preconditioners known as incomp...
We present support theory, a set of techniques for bounding extreme eigenvalues and condition number...
In this chapter, we give a brief overview of a particular class of preconditioners known as incomple...
AbstractWe propose new block incomplete factorization preconditioners for a symmetric block-tridiago...
AbstractA considerable interest has been devoted to block matrix incomplete factorization preconditi...
The paper deals with eigenvalue estimates for block incomplete fac- torization methods for symmetric...
Eigenvalue and condition number estimates for preconditioned iteration matrices provide the informat...
AbstractEigenvalue and condition number estimates for preconditioned iteration matrices provide the ...
AbstractThe paper is devoted to the conditioning analysis of modified block incomplete factorization...
AbstractWe derive simple analytical upper bounds on the spectral condition number associated with th...
AbstractWe improve the conditioning analysis of modified block incomplete factorizations of Stieltje...
This paper is dedicated to the memory of Fred Howes Abstract. We present support theory, a set of te...
We consider symmetric saddle point matrices. We analyze block preconditioners based on the knowledge...
AbstractIn the work of solving a uniformly elliptic differential equations Au:=−Δu+a1ux+a2uy+a0u=f i...
A new multilevel preconditioner is proposed for the iterative solution of linear systems whose coeff...
. In this chapter, we give a brief overview of a particular class of preconditioners known as incomp...
We present support theory, a set of techniques for bounding extreme eigenvalues and condition number...
In this chapter, we give a brief overview of a particular class of preconditioners known as incomple...
AbstractWe propose new block incomplete factorization preconditioners for a symmetric block-tridiago...
AbstractA considerable interest has been devoted to block matrix incomplete factorization preconditi...