The Large-Eddy Simulation technique of compressible flows and the effect of compressibility on mixing layers are the main subjects of this thesis. Direct Numerical Simulations (DNS) and Large-Eddy Simulations (LES) of the temporal compressible mixing layer at various Mach and Reynolds numbers have been conducted to investigate these subjects. With respect to the LES technique, Large-Eddy Simulations have been performed at convective Mach numbers 0.2, 0.6 and 1.2 and the results have been compared with filtered DNS-data. It appeared that the dynamic subgrid-models lead to relatively accurate results compared to the other models tested. The dynamic approach turned out to yield acceptable results too in LES of a mixing layer that currently can...