Short context messages (like tweets and SMS’s) are a potentially rich source of continuously and instantly updated information. Shortness and informality of such messages are challenges for Natural Language Processing tasks. Most efforts done in this direction rely on machine learning techniques which are expensive in terms of data collection and training. In this paper we present an unsupervised Semantic Web-driven approach to improve the extraction process by using clues from the disambiguation process. For extraction we used a simple Knowledge-Base matching technique combined with a clustering-based approach for disambiguation. Experimental results on a self-collected set of tweets (as an example of short context messages) show improveme...