In order to alleviate the dynamic stall effects in helicopter rotor, the sequential quadratic programming (SQP) method is employed to optimize the characteristics of airfoil under dynamic stall conditions based on the SC1095 airfoil. The geometry of airfoil is parameterized by the class-shape-transformation (CST) method, and the C-topology body-fitted mesh is then automatically generated around the airfoil by solving the Poisson equations. Based on the grid generation technology, the unsteady Reynolds-averaged Navier-Stokes (RANS) equations are chosen as the governing equations for predicting airfoil flow field and the highly-efficient implicit scheme of lower–upper symmetric Gauss–Seidel (LU-SGS) is adopted for temporal discretization. To ...