This study examines the global earthquake detection capability of the Global Centroid Moment Tensor (GCMT) catalogue during the periods immediately following large earthquakes, including intermediate-depth (70 ≤ depth < 300 km) and deep (300 km ≤ depth) events. We have already shown that the detection capability beyond an aftershock zone degrades remarkably and that this condition persists for several hours after the occurrence of large shallow (depth < 70 km) earthquakes. Because an intermediate-depth or deep earthquake occasionally generates seismic waves with significant amplitudes, it is necessary to investigate the change in the detection capability caused by such events. To this end, from the GCMT catalogue, we constructed the t...