Given a permutation $\pi$, the application of prefix reversal $f^{(i)}$ to $\pi$ reverses the order of the first $i$ elements of $\pi$. The problem of sorting by prefix reversals (also known as pancake flipping), made famous by Gates and Papadimitriou (Discrete Math., 27 (1979), pp. 47–57), asks for the minimum number of prefix reversals required to sort the elements of a given permutation. In this paper we study a variant of this problem where the prefix reversals act not on permutations but on strings over a fixed size alphabet. We determine the minimum number of prefix reversals required to sort binary and ternary strings, with polynomial-time algorithms for these sorting problems as a result; demonstrate that computing the minimum pre...