Many functional programs and higher order term rewrite systems contain, besides higher order rules, also a significant first order part. We discuss how an automatic termination prover can split a rewrite system into a first order and a higher order part. The results are applicable to all common styles of higher order rewriting with simple types, although some dependency pair approach is needed to use them. © 2011 Springer-Verlag
Abstract. Simply-typed term rewriting systems (STRSs) are an extension of term rewriting systems. ST...
International audienceThe static dependency pair method is a method for proving the termination of h...
International audienceArts and Giesl proved that the termination of a first-order rewrite system can...
Abstract. The dependency pair technique is a powerful modular method for automated termination proof...
The dependency pair technique is a powerful modular method for automated termination proofs of term ...
This paper discusses a number of methods to prove termination of higher-order term rewriting systems...
Abstract The higher-order rewrite systems (HRS for short) are a computation model of functional prog...
Abstract The higher-order rewrite systems (HRS for short) are a computation model of functional prog...
Abstract. The dependency pair approach is one of the most powerful techniques for termination and in...
AbstractWe present techniques to prove termination and innermost termination of term rewriting syste...
Abstract. The dependency pair approach is one of the most powerful techniques for automated (innermo...
The dependency pair approach [2, 13, 14] is a powerful technique for automated termination and inner...
Abstract. The dependency pair approach is one of the most powerful techniques for termination and in...
We revisit the static dependency pair method for proving termination of higher-order term rewriting ...
Dependency pairs are a key concept at the core of modern automated termination provers for first-ord...
Abstract. Simply-typed term rewriting systems (STRSs) are an extension of term rewriting systems. ST...
International audienceThe static dependency pair method is a method for proving the termination of h...
International audienceArts and Giesl proved that the termination of a first-order rewrite system can...
Abstract. The dependency pair technique is a powerful modular method for automated termination proof...
The dependency pair technique is a powerful modular method for automated termination proofs of term ...
This paper discusses a number of methods to prove termination of higher-order term rewriting systems...
Abstract The higher-order rewrite systems (HRS for short) are a computation model of functional prog...
Abstract The higher-order rewrite systems (HRS for short) are a computation model of functional prog...
Abstract. The dependency pair approach is one of the most powerful techniques for termination and in...
AbstractWe present techniques to prove termination and innermost termination of term rewriting syste...
Abstract. The dependency pair approach is one of the most powerful techniques for automated (innermo...
The dependency pair approach [2, 13, 14] is a powerful technique for automated termination and inner...
Abstract. The dependency pair approach is one of the most powerful techniques for termination and in...
We revisit the static dependency pair method for proving termination of higher-order term rewriting ...
Dependency pairs are a key concept at the core of modern automated termination provers for first-ord...
Abstract. Simply-typed term rewriting systems (STRSs) are an extension of term rewriting systems. ST...
International audienceThe static dependency pair method is a method for proving the termination of h...
International audienceArts and Giesl proved that the termination of a first-order rewrite system can...