In this work we present a unique transmission electron microscopy study of the thermal stability of gas phase synthesized Mg nanoparticles, which have attracted strong interest as high capacity hydrogen storage materials. Indeed, Mg nanoparticles with a MgO shell (∼3 nm thick) annealed at 300 °C show evaporation, void formation, and void growth in the Mg core both in vacuum and under a high pressure gas environment. This is mainly due to the outward diffusion and evaporation of Mg with the simultaneously inward diffusion of vacancies leading to void growth (Kirkendall effect). The rate of Mg evaporation and void formation depends on the annealing conditions. In vacuum, and at T=300 °C, the complete evaporation of the Mg core takes place (wi...