We discuss structural equation models for non-normal variables. In this situation the maximum likelihood and the generalized least-squares estimates of the model parameters can give incorrect estimates of the standard errors and the associated goodness-of-fit chi-squared statistics. If the sample size is not large, for instance smaller than about 1000, asymptotic distribution-free estimation methods are also not applicable. This paper assumes that the observed variables are transformed to normally distributed variables. The non-normally distributed variables are transformed with a Box-Cox function. Estimation of the model parameters and the transformation parameters is done by the maximum likelihood method. Furthermore, the test statistics ...