We consider the problem of estimating the mean of an infinite-dimensional normal distribution from the Bayesian perspective. Under the assumption that the unknown true mean satisfies a "smoothness condition," we first derive the convergence rate of the posterior distribution for a prior that is the infinite product of certain normal distributions and compare with the minimax rate of convergence for point estimators. Although the posterior distribution can achieve the optimal rate of convergence, the required prior depends on a "smoothness parameter" q. When this parameter q is unknown, besides the estimation of the mean, we encounter the problem of selecting a model. In a Bayesian approach, this uncertainty in the model selection can be han...