We consider asymmetric cyclic polling systems with an arbitrary number of queues, general service-time distributions, zero switch-over times, gated service at each queue, and with general renewal arrival processes at each of the queues. For this classical model, we propose a new method to derive closed-form expressions for the expected delay at each of the queues when the load tends to 1, under proper heavy-traffic (HT) scalings. In the literature on polling models, rigorous proofs of HT limits have only been obtained for polling models with Poisson-type arrival processes, whereas for renewal arrivals HT limits are based on conjectures [E.G. Coffman, A.A. Puhalskii, M.I. Reiman, Polling systems with zero switch-over times: A heavy-traffic p...