The standard Poisson structure on the rectangular matrix variety Mm,n(C) is investigated, via the orbits of symplectic leaves under the action of the maximal torus T ⊂ GLm+n(C). These orbits, finite in number, are shown to be smooth irreducible locally closed subvarieties of Mm,n(C), isomorphic to intersections of dual Schubert cells in the full flag variety of GLm+n(C). Three different presentations of the T-orbits of symplectic leaves in Mm,n(C) are obtained – (a) as pullbacks of Bruhat cells in GLm+n(C) under a particular map; (b) in terms of rank conditions on rectangular submatrices; and (c) as matrix products of sets similar to double Bruhat cells in GLm(C) and GLn(C). In presentation (a), the orbits of leaves are parame...