In modern physics, quantum decoherence, a subject still under debate, is viewed as the mechanism responsible for the quantum-to-classical transition as the initially prepared quantum state interacts with its environment in an irreversible manner. As expected, one of the most common mechanisms responsible of the macroscopically observed decoherence involves collisions of an atom or molecule, initially prepared in a coherent superposition of states, with gas particles. In this work, a coherent superposition of quantum internal states of NO molecules is prepared by the interaction between the molecule with both a static and a radiofrequency electric field. Subsequently, NO+Ar collision decoherence experiments, are investigated by measuring the...