In a production or measure situation, operators are required to make corrections to a process using the measurement of a sample. In both cases, it is always difficult to suggest a correction from a deviation. The correction is the result of two different deviations: one in set-up and the second in production. The latter is considered as noise. The objective of this paper is to propose an original approach to calculate the best correction using a Bayesian approach. A correction formula is given with three assumptions as regards adjusting the distribution: uniform, triangular and normal distribution. This paper gives a graphical interpretation of these different assumptions and a discussion of the results. Based on these results, the paper pr...