Let $\Omega\subset \mathbb{R}^2$ be a bounded domain with the same area as the unit disk $B_1$ and let $$ E_\varepsilon(u,\Omega)=\frac{1}{2}\int_\Omega |\nabla u|^2\,dx +\frac{1}{4\varepsilon^2}\int_\Omega (|u|^2-1)^2\,dx $$ be the Ginzburg-Landau functional. Denote by $\tilde u_\varepsilon$ the radial solution to the Euler equation associated to the problem $\min \{E_\varepsilon(u,B_1): \> u\big| _{\partial B_{1}}=x\}$ and by $$\eqalign{ \mathcal{K}=\Big\{v=(v_1,v_2) \in H^1(\Omega;\mathbb{R}^2): \int_\Omega v_1\,dx=\int_\Omega v_2\,dx=0,\cr \int_\Omega |v|^2\,dx\ge \int_{B_1} |\tilde u_\varepsilon|^2\,dx\Big\}. \cr}$$ In this note we prove that $$ \min_{v \in \mathcal{K}} E_\varepsilon (v,\Omega) \le E_\varepsilon (\ti...
In this article we study the minimizers of the functional $$ E_varepsilon(u,G)={1over p}int_G|abla u...
We study global solutions $u:{\mathbb R}^3\to{\mathbb R}^2$ of the Ginzburg-Landau equation $-\Delta...
International audienceWe provide necessary and sufficient conditions for the uniqueness of minimiser...
This paper is concerned with the asymptotic behavior of the radial minimizers of the p(x)-Ginzburg-L...
We study the asymptotic behavior of the radial minimizer of a variant of the p-Ginzburg-Landau funct...
Let $\mathcal{D} =\Omega\setminus\overline{\omega} \subset \mathbb{R}^2$ be a smooth annular type do...
Let $\mathcal{D} =\Omega\setminus\overline{\omega} \subset \mathbb{R}^2$ be a smooth annular type do...
International audienceLet G be a smooth bounded domain in R(2). Consider the functional E(epsilon) (...
International audienceWe consider the linearized operators, denoted L-d,L-1, of the Ginzburg-Landau ...
Abstract. We study the asymptotic behavior of the radial minimizer of a variant of the p-Ginzburg-La...
We minimize the standard Ginzburg-Landau functional $E_\epsilon$ over maps $u$ defined on the unit d...
Abstract. The author proves the W 1;p and C1; convergence of the radial mini-mizers u " of an ...
Let G be a bounded and smooth, simply connected domain in R2 and let g: ∂G → S1 be a boundary condit...
We consider, in a smooth bounded multiply connected domain D ⊂ R2, the Ginzburg-Landau energy Eε(u) ...
We prove the uniqueness of radial minimizers of a Ginzburg-Landau type functional. We present also a...
In this article we study the minimizers of the functional $$ E_varepsilon(u,G)={1over p}int_G|abla u...
We study global solutions $u:{\mathbb R}^3\to{\mathbb R}^2$ of the Ginzburg-Landau equation $-\Delta...
International audienceWe provide necessary and sufficient conditions for the uniqueness of minimiser...
This paper is concerned with the asymptotic behavior of the radial minimizers of the p(x)-Ginzburg-L...
We study the asymptotic behavior of the radial minimizer of a variant of the p-Ginzburg-Landau funct...
Let $\mathcal{D} =\Omega\setminus\overline{\omega} \subset \mathbb{R}^2$ be a smooth annular type do...
Let $\mathcal{D} =\Omega\setminus\overline{\omega} \subset \mathbb{R}^2$ be a smooth annular type do...
International audienceLet G be a smooth bounded domain in R(2). Consider the functional E(epsilon) (...
International audienceWe consider the linearized operators, denoted L-d,L-1, of the Ginzburg-Landau ...
Abstract. We study the asymptotic behavior of the radial minimizer of a variant of the p-Ginzburg-La...
We minimize the standard Ginzburg-Landau functional $E_\epsilon$ over maps $u$ defined on the unit d...
Abstract. The author proves the W 1;p and C1; convergence of the radial mini-mizers u " of an ...
Let G be a bounded and smooth, simply connected domain in R2 and let g: ∂G → S1 be a boundary condit...
We consider, in a smooth bounded multiply connected domain D ⊂ R2, the Ginzburg-Landau energy Eε(u) ...
We prove the uniqueness of radial minimizers of a Ginzburg-Landau type functional. We present also a...
In this article we study the minimizers of the functional $$ E_varepsilon(u,G)={1over p}int_G|abla u...
We study global solutions $u:{\mathbb R}^3\to{\mathbb R}^2$ of the Ginzburg-Landau equation $-\Delta...
International audienceWe provide necessary and sufficient conditions for the uniqueness of minimiser...