Effects of curvature upon the vibration characteristics of doubly curved shallow shells are assessed in this paper. Boundary conditions of the shell are generally specified in terms of distributed elastic restraints along the edges. The classical homogeneous boundary supports can be easily simulated by setting the stiffnesses of restraining springs to either zero or infinite. Vibration problems of the shell are solved by a modified Fourier series method that each of the displacements is invariably expressed as a simple trigonometric series which converges uniformly and acceleratedly over the solution domain. All the unknown expansion coefficients are treated equally as a set of independent generalized coordinates and solved using the Raylei...