The ergodic properties of SDEs, and various time discretizations for SDEs, are studied. The ergodicity of SDEs is established by using techniques from the theory of Markov chains on general state spaces, such as that expounded by Meyn-Tweedie. Application of these Markov chain results leads to straightforward proofs of geometric ergodicity for a variety of SDEs, including problems with degenerate noise and for problems with locally Lipschitz vector fields. Applications where this theory can be usefully applied include damped-driven Hamiltonian problems (the Langevin equation), the Lorenz equation with degenerate noise and gradient systems. The same Markov chain theory is then used to study time-discrete approximations of these SDEs. The two...