In this article we study the existence, uniqueness and asymptotic stability of solution to the mixed problem for the semilinear wave equation with acoustic boundary conditions in domains with non-locally reacting boundary. We also prove the existence and uniqueness of solution to a problem with nonmonotone dissipative term
In the first part of this thesis, suitable function spaces for analysis of partial differ- ential eq...
AbstractThe goal of this work is to study a model of the wave equation with semilinear porous acoust...
AbstractWe consider two dimensional exterior mixed problems for a semilinear damped wave equation wi...
We prove the existence and uniqueness of global solutions to the mixed problem for the Carrier equat...
International audienceIn this paper we consider a multi-dimensional wave equation with dynamic bound...
In this paper, we consider mixed problems with a spacelike boundary derivative condition for semilin...
In this paper, we consider mixed problems with a timelike boundary derivative (or a Dirichlet) condi...
In this article, we prove theorems on existence, uniqueness, and nonexistence of solutions for nonl...
It is well known that some problems in mechanics and physics lead to partial differential equations ...
AbstractWe prove the existence and uniqueness of global solutions to the mixed problem for the Carri...
© 2018, Pleiades Publishing, Ltd. The solvability conditions of the over-determined boundary value p...
Orientadores: Luis Adauto da Justa Medeiros, Cicero Lopes FrotaTese (doutorado) - Universidade Estad...
The weak well-posedness, with the mixed boundary conditions, of the strongly damped linear wave equa...
available for noncommercial, educational purposes, provided that this copyright statement appears on...
AbstractThe mixed type boundary problem utt = ((aijuxi)xj)t + (bijuxi)xj + (F(x, t, u, ux))t in n-di...
In the first part of this thesis, suitable function spaces for analysis of partial differ- ential eq...
AbstractThe goal of this work is to study a model of the wave equation with semilinear porous acoust...
AbstractWe consider two dimensional exterior mixed problems for a semilinear damped wave equation wi...
We prove the existence and uniqueness of global solutions to the mixed problem for the Carrier equat...
International audienceIn this paper we consider a multi-dimensional wave equation with dynamic bound...
In this paper, we consider mixed problems with a spacelike boundary derivative condition for semilin...
In this paper, we consider mixed problems with a timelike boundary derivative (or a Dirichlet) condi...
In this article, we prove theorems on existence, uniqueness, and nonexistence of solutions for nonl...
It is well known that some problems in mechanics and physics lead to partial differential equations ...
AbstractWe prove the existence and uniqueness of global solutions to the mixed problem for the Carri...
© 2018, Pleiades Publishing, Ltd. The solvability conditions of the over-determined boundary value p...
Orientadores: Luis Adauto da Justa Medeiros, Cicero Lopes FrotaTese (doutorado) - Universidade Estad...
The weak well-posedness, with the mixed boundary conditions, of the strongly damped linear wave equa...
available for noncommercial, educational purposes, provided that this copyright statement appears on...
AbstractThe mixed type boundary problem utt = ((aijuxi)xj)t + (bijuxi)xj + (F(x, t, u, ux))t in n-di...
In the first part of this thesis, suitable function spaces for analysis of partial differ- ential eq...
AbstractThe goal of this work is to study a model of the wave equation with semilinear porous acoust...
AbstractWe consider two dimensional exterior mixed problems for a semilinear damped wave equation wi...