The direct methods for the solution of systems of linear equations with a symmetric positive-semidefinite (SPS) matrix A usually comprise the Cholesky decomposition of a nonsingular diagonal block A[MATHEMATICAL SCRIPT CAPITAL J][MATHEMATICAL SCRIPT CAPITAL J] of A and effective evaluation of the action of a generalized inverse of the corresponding Schur complement. In this note we deal with both problems, paying special attention to the stiffness matrices of floating structures without mechanisms. We present a procedure which first identifies a well-conditioned positive-definite diagonal block A[MATHEMATICAL SCRIPT CAPITAL J][MATHEMATICAL SCRIPT CAPITAL J] of A, then decomposes A[MATHEMATICAL SCRIPT CAPITAL J][MATHEMATICAL SCRIPT CAPITAL J...