We study actions of semisimple Hopf algebras H on Weyl algebras A over an algebraically closed field of characteristic zero. We show that the action of H on A must factor through a group action; in other words, if H acts inner faithfully on A, then H is cocommutative. The techniques used include reduction modulo a prime number and the study of semisimple cosemisimple Hopf actions on division algebras.National Science Foundation (U.S.) (Grant DMS-1000113)National Science Foundation (U.S.) (Grant DMS-1401207
We prove that the category of cocommutative Hopf algebras over a field is a semi-abelian category. T...
We prove that the category of cocommutative Hopf algebras over a field is a semi-abelian category. T...
Let H be a cosemisimple Hopf algebra over an algebraically closed field. In the first chapter of th...
© 2016, Allerton Press, Inc.We extend several classical results in the theory of invariants of finit...
© 2016, Allerton Press, Inc.We extend several classical results in the theory of invariants of finit...
© 2016, Allerton Press, Inc.We extend several classical results in the theory of invariants of finit...
Let k be an algebraically closed field of characteristic zero. In joint work with J. Cuadra, we show...
AbstractThis paper concerns conditions on the action of a finite dimensional semisimple Hopf algebra...
The aim of this thesis is to establish some new interactions between the theory of semi-abelian cate...
Abstract We examine actions of finite-dimensional pointed Hopf algebras on central si...
AbstractIfAis a p.i. algebra in characteristic zero with action from a finite-dimensional semisimple...
© 2016 American Mathematical Society.It is proved that any finite dimensional Hopf algebra which is ...
© 2016 American Mathematical Society.It is proved that any finite dimensional Hopf algebra which is ...
© 2016, Allerton Press, Inc.We extend several classical results in the theory of invariants of finit...
© 2016 American Mathematical Society.It is proved that any finite dimensional Hopf algebra which is ...
We prove that the category of cocommutative Hopf algebras over a field is a semi-abelian category. T...
We prove that the category of cocommutative Hopf algebras over a field is a semi-abelian category. T...
Let H be a cosemisimple Hopf algebra over an algebraically closed field. In the first chapter of th...
© 2016, Allerton Press, Inc.We extend several classical results in the theory of invariants of finit...
© 2016, Allerton Press, Inc.We extend several classical results in the theory of invariants of finit...
© 2016, Allerton Press, Inc.We extend several classical results in the theory of invariants of finit...
Let k be an algebraically closed field of characteristic zero. In joint work with J. Cuadra, we show...
AbstractThis paper concerns conditions on the action of a finite dimensional semisimple Hopf algebra...
The aim of this thesis is to establish some new interactions between the theory of semi-abelian cate...
Abstract We examine actions of finite-dimensional pointed Hopf algebras on central si...
AbstractIfAis a p.i. algebra in characteristic zero with action from a finite-dimensional semisimple...
© 2016 American Mathematical Society.It is proved that any finite dimensional Hopf algebra which is ...
© 2016 American Mathematical Society.It is proved that any finite dimensional Hopf algebra which is ...
© 2016, Allerton Press, Inc.We extend several classical results in the theory of invariants of finit...
© 2016 American Mathematical Society.It is proved that any finite dimensional Hopf algebra which is ...
We prove that the category of cocommutative Hopf algebras over a field is a semi-abelian category. T...
We prove that the category of cocommutative Hopf algebras over a field is a semi-abelian category. T...
Let H be a cosemisimple Hopf algebra over an algebraically closed field. In the first chapter of th...