We show general transformations from subexponentially-secure approximate indistinguishability obfuscation (IO) where the obfuscated circuit agrees with the original circuit on a 1/2+ϵ fraction of inputs on a certain samplable distribution, into exact indistinguishability obfuscation where the obfuscated circuit and the original circuit agree on all inputs. As a step towards our results, which is of independent interest, we also obtain an approximate-to-exact transformation for functional encryption. At the core of our techniques is a method for “fooling” the obfuscator into giving us the correct answer, while preserving the indistinguishability-based security. This is achieved based on various types of secure computation protocols that can ...