International audienceThis work presents a Recommender System (RS) that relies on distributed recommendation techniques and implicit relations in data. In order to simplify the experience of users, recommender systems pre-select and filter information in which they may be interested in. Users express their interests in items by giving their opinion (explicit data) and navigating through the web-page (implicit data). The Matrix Fac-torization (MF) recommendation technique analyze this feedback, but it does not take more heterogeneous data into account. In order to improve recommendations, the description of items can be used to increase the relations among data. Our proposal extends MF techniques by adding implicit relations in an independen...