In this thesis, we deal with the long time dynamics for solutions of the L2 critical and supercritical generalized KdV equations.The first part of this work is devoted to construct a stable self-similar blow up dynamics for slightly L2 supercritical gKdV equations in the energy space H1. The proof relies on the self-similar profile constructed by H. Koch. We will also give a specific description of the formation of singularity near the blow up time.The second part is devoted to construct blow up solutions to the slightly L2 supercritical gKdV equations with multiple blow up points. The key idea is to consider solutions which behaves like a decoupled sum of bubbles. And each bubble behaves like a self-similar blow up solutions with a single ...