National audienceThis paper describes the system we used on the tasks of the text mining challenge (DEFT 2017). This thirteenth edition of this challenge concerned the analysis of opinions and figurative language in French tweets. Three tasks have been proposed : (i) the first one concerns the classification of non-figurative tweets according to their polarity ; (ii) the second one concerns the identification of figurative language, while (iii) the third one concerns the classification of figurative and non-figurative tweets according to their polarity. We proposed an automated system based on Support Vector Machines (SVM). The system automatically chooses on each step the best preprocessing, syntactic features and sentiment lexicons by cro...
Cette thèse a pour objectif la détection du langage figuratif dans les réseaux sociaux. Nous nous fo...
International audiencePréface : L’analyse des sentiments est un domaine de recherche extrêmement act...
National audienceInformation Retrieval and Sentiment Analysis in Tweets about Public Transportation ...
National audienceThis paper describes the system we used on the tasks of the text mining challenge (...
National audienceThis paper describes the methods we submitted to the DEFT 2015 Challenge (Text Mini...
National audienceCharacter-level Models for Polarity Detection in Tweets We present our contribution...
International audienceThis articles describes the methods developed by the TWEETANEUSE team for the ...
International audienceWe present the system used by the MELODI team in the DEFT2017 =competition whi...
This thesis aims to detect figurative language devices in social networks. We focus in particular on...
DEFT 2018We present, in this paper, our contribution in DEFT 2018 task 2 : "Global polarity", determ...
International audienceL'édition 2015 du défi fouille de texte (DEFT) porte sur la fouille d'opinion ...
The DsUniPi team participated in the SemEval 2015 Task#11: Sentiment Analysis of Figura-tive Languag...
National audienceInformation Retrieval and Sentiment Analysis in Tweets about Public Transportation ...
We present, in this paper, our contribution in DEFT 2018 task 2 : "Global polarity", determining the...
Cette thèse a pour objectif la détection du langage figuratif dans les réseaux sociaux. Nous nous fo...
International audiencePréface : L’analyse des sentiments est un domaine de recherche extrêmement act...
National audienceInformation Retrieval and Sentiment Analysis in Tweets about Public Transportation ...
National audienceThis paper describes the system we used on the tasks of the text mining challenge (...
National audienceThis paper describes the methods we submitted to the DEFT 2015 Challenge (Text Mini...
National audienceCharacter-level Models for Polarity Detection in Tweets We present our contribution...
International audienceThis articles describes the methods developed by the TWEETANEUSE team for the ...
International audienceWe present the system used by the MELODI team in the DEFT2017 =competition whi...
This thesis aims to detect figurative language devices in social networks. We focus in particular on...
DEFT 2018We present, in this paper, our contribution in DEFT 2018 task 2 : "Global polarity", determ...
International audienceL'édition 2015 du défi fouille de texte (DEFT) porte sur la fouille d'opinion ...
The DsUniPi team participated in the SemEval 2015 Task#11: Sentiment Analysis of Figura-tive Languag...
National audienceInformation Retrieval and Sentiment Analysis in Tweets about Public Transportation ...
We present, in this paper, our contribution in DEFT 2018 task 2 : "Global polarity", determining the...
Cette thèse a pour objectif la détection du langage figuratif dans les réseaux sociaux. Nous nous fo...
International audiencePréface : L’analyse des sentiments est un domaine de recherche extrêmement act...
National audienceInformation Retrieval and Sentiment Analysis in Tweets about Public Transportation ...