Underestimation of extreme values is a widely acknowledged issue in daily precipitation simulation. Nonparametric precipitation generators have inherent limitations in representing extremes. Parametric generators can realistically model the full spectrum of precipitation amount through compound distributions. Nevertheless, fitting these distributions suffers from numerical instability, supervised learning, and computational demand. This study presents an easy-to-implement hybrid probability distribution to model the full spectrum of precipitation amount. The basic idea for the hybrid distribution lies in synthesizing low to moderate precipitation by an exponential distribution and extreme precipitation by a generalized Pareto distribution. ...