Software packages providing a whole set of data mining and machine learning algorithms are attractive because they allow experimentation with many kinds of algorithms in an easy setup. However, these packages are often based on main-memory data structures, limiting the amount of data they can handle. In this paper we use a relational database as secondary storage in order to eliminate this limitation. Unlike existing approaches, which often focus on optimizing a single algorithm to work with a database backend, we propose a general approach, which provides a database interface for several algorithms at once. We have taken a popular machine learning software package, Weka, and added a relational storage manager as back-tier to the system. Th...