Using a comprehensive international trade data set we investigate empirical regularities known as Zipf's Law or the rank-size rule for the distribution of the interaction between countries as measured by revealed comparative advantage. Using the recently developed estimator by Gabaix and Ibragimov (2007) we find strong evidence in favor of the rank-size rule along the time, country, and sector dimension for three different levels of data aggregation. The estimated Pareto exponents that characterize the distribution of revealed comparative advantage are stable over time but differ across countries and sectors. These differences are related empirically to country and sector characteristics, including population size, GDP, and factor intensiti...
Existing explanations of Zipf's law (Pareto exponent approximately equal to 1) in size distributions...
The rank-size rule and Zipf's law for city sizes have been traditionally examined by means of OLS es...
We employ a concept popular in physics —the Zipf rank approach— in order to estimate the number of y...
Using a comprehensive international trade data set we investigate empirical regularities (known as Z...
textabstractUsing a comprehensive international trade data set we investigate empirical regularities...
ABSTRACT: Zipf's law has two striking regularities: excellent fit and an exponent close to 1.0. When...
We offer a general-equilibrium economic approach to Zip's Law or, more generally, the rank-size dist...
We offer a general-equilibrium economic approach to Zip's Law or, more generally, the rank-size dist...
In this paper trade pattern based on distances between countries was tested through gravity model ap...
The Revealed Comparative Advantage (RCA) has been a cornerstone for cross-country trade analyses. Co...
The widely-used Zipf law has two striking regularities: excellent fit and close-to-one exponent. Whe...
This study looks at power laws, specifically Zipf ’s law and Pareto distributions, previously used t...
The aim of this article is to demonstrate regularity in the world income distribution. In particular...
We first demonstrate that, within a fully integrated economy (FIE) in which there is free mobility o...
If Zipf's Law holds, the size of a city is inversely proportional to its rank, and a log-log plot of...
Existing explanations of Zipf's law (Pareto exponent approximately equal to 1) in size distributions...
The rank-size rule and Zipf's law for city sizes have been traditionally examined by means of OLS es...
We employ a concept popular in physics —the Zipf rank approach— in order to estimate the number of y...
Using a comprehensive international trade data set we investigate empirical regularities (known as Z...
textabstractUsing a comprehensive international trade data set we investigate empirical regularities...
ABSTRACT: Zipf's law has two striking regularities: excellent fit and an exponent close to 1.0. When...
We offer a general-equilibrium economic approach to Zip's Law or, more generally, the rank-size dist...
We offer a general-equilibrium economic approach to Zip's Law or, more generally, the rank-size dist...
In this paper trade pattern based on distances between countries was tested through gravity model ap...
The Revealed Comparative Advantage (RCA) has been a cornerstone for cross-country trade analyses. Co...
The widely-used Zipf law has two striking regularities: excellent fit and close-to-one exponent. Whe...
This study looks at power laws, specifically Zipf ’s law and Pareto distributions, previously used t...
The aim of this article is to demonstrate regularity in the world income distribution. In particular...
We first demonstrate that, within a fully integrated economy (FIE) in which there is free mobility o...
If Zipf's Law holds, the size of a city is inversely proportional to its rank, and a log-log plot of...
Existing explanations of Zipf's law (Pareto exponent approximately equal to 1) in size distributions...
The rank-size rule and Zipf's law for city sizes have been traditionally examined by means of OLS es...
We employ a concept popular in physics —the Zipf rank approach— in order to estimate the number of y...