Let K be a compact Hausdorff space, and let C(K) be the corresponding Banach space of continuous functions on K. It is well-known that every 1-summing operator S:C(K)→l2 is also nuclear, and therefore factors S = S1S2, with S1:l2→l2 a Hilbert-Schmidt operator and S1:C(K)→l2 a bounded operator. It is easily seen that this latter property is preserved when C(K) is replaced by any quotient, and that a Banach space X enjoys this property if and only if its second dual, X**, does. This led A. Pełczyński [15] to ask if the second dual of a Banach space X must be isomorphic to a quotient of a C(K)-space if X has the property that every 1-summing operator X-→l2 factors through a Hilbert-Schmidt operator. In this paper, we shall first of all reformu...
Cette thèse est consacrée à l’extension au cadre Banachique de la notion d’opérateur de Hilbert-Schm...
The space of the fully absolutely (r; r1,..., rn)-summing n-linear mappings between Banach spaces is...
Cette thèse est consacrée à l’extension au cadre Banachique de la notion d’opérateur de Hilbert-Schm...
Let K be a compact Hausdorff space, and let C(K) be the corresponding Banach space of continuous fun...
AbstractWe study the structure of Banach spaces X determined by the coincidence of nuclear maps on X...
AbstractWe study the structure of Banach spaces X determined by the coincidence of nuclear maps on X...
In this work we discuss several ways to extend to the context of Banach spaces the notion of Hilbert...
[EN] We provide a new separation-based proof of the domination theorem for (q, 1)-summing operators....
AbstractWe give for some Banach spaces X and Y examples of linear and continuous operators U: C(T,X)...
summary:We suggest a method of renorming of spaces of operators which are suitably approximable by s...
AbstractIt is shown that the eigenvalues of (q, 2)-absolutely summing operators are q-th power summa...
summary:We suggest a method of renorming of spaces of operators which are suitably approximable by s...
Cette thèse est consacrée à l’extension au cadre Banachique de la notion d’opérateur de Hilbert-Schm...
The authors thank J. M. Calabuig and P. Rueda for valuable discussions at the early stage of this wo...
AbstractThe little Grothendieck theorem for Banach spaces says that every bounded linear operator be...
Cette thèse est consacrée à l’extension au cadre Banachique de la notion d’opérateur de Hilbert-Schm...
The space of the fully absolutely (r; r1,..., rn)-summing n-linear mappings between Banach spaces is...
Cette thèse est consacrée à l’extension au cadre Banachique de la notion d’opérateur de Hilbert-Schm...
Let K be a compact Hausdorff space, and let C(K) be the corresponding Banach space of continuous fun...
AbstractWe study the structure of Banach spaces X determined by the coincidence of nuclear maps on X...
AbstractWe study the structure of Banach spaces X determined by the coincidence of nuclear maps on X...
In this work we discuss several ways to extend to the context of Banach spaces the notion of Hilbert...
[EN] We provide a new separation-based proof of the domination theorem for (q, 1)-summing operators....
AbstractWe give for some Banach spaces X and Y examples of linear and continuous operators U: C(T,X)...
summary:We suggest a method of renorming of spaces of operators which are suitably approximable by s...
AbstractIt is shown that the eigenvalues of (q, 2)-absolutely summing operators are q-th power summa...
summary:We suggest a method of renorming of spaces of operators which are suitably approximable by s...
Cette thèse est consacrée à l’extension au cadre Banachique de la notion d’opérateur de Hilbert-Schm...
The authors thank J. M. Calabuig and P. Rueda for valuable discussions at the early stage of this wo...
AbstractThe little Grothendieck theorem for Banach spaces says that every bounded linear operator be...
Cette thèse est consacrée à l’extension au cadre Banachique de la notion d’opérateur de Hilbert-Schm...
The space of the fully absolutely (r; r1,..., rn)-summing n-linear mappings between Banach spaces is...
Cette thèse est consacrée à l’extension au cadre Banachique de la notion d’opérateur de Hilbert-Schm...