We investigate the design of dynamic programming algorithms in unreliable memories, i.e., in the presence of errors that lead the logical state of some bits to be read differently from how they were last written. Assuming that a limited number of memory faults can be inserted at run-time by an adversary with unbounded computational power, we obtain the first resilient algorithms for a broad range of dynamic programming problems, devising a general framework that can be applied to both iterative and recursive implementations. Besides all local dependency problems, where updates to table entries are determined by the contents of neighboring cells, we also settle challenging non-local problems, such as all-pairs shortest paths and matrix multi...