The tensor power of the clique on t vertices (denoted by K_t^n) is the graph on vertex set {1, ..., t}^n such that two vertices x, y in {1, ..., t}^n are connected if and only if x_i != y_i for all i in {1, ..., n}. Let the density of a subset S of K_t^n to be mu(S) := |S|/t^n. Also let the vertex boundary of a set S to be the vertices of the graph, including those of S, which are incident to some vertex of S. We investigate two similar problems on such graphs. First, we study the vertex isoperimetry problem. Given a density nu in [0, 1] what is the smallest possible density of the vertex boundary of a subset of K_t^n of density nu? Let Phi_t(nu) be the infimum of these minimum densities as n -> infinity. We find a recursive relation all...