In insertion-only streaming, one sees a sequence of indices a_1, a_2, ..., a_m in [n]. The stream defines a sequence of m frequency vectors x(1), ..., x(m) each in R^n, where x(t) is the frequency vector of items after seeing the first t indices in the stream. Much work in the streaming literature focuses on estimating some function f(x(m)). Many applications though require obtaining estimates at time t of f(x(t)), for every t in [m]. Naively this guarantee is obtained by devising an algorithm with failure probability less than 1/m, then performing a union bound over all stream updates to guarantee that all m estimates are simultaneously accurate with good probability. When f(x) is some l_p norm of x, recent works have shown that this union...