In this paper we study the problem of maintaining the strongly connected components of a graph in the presence of failures. In particular, we show that given a directed graph G=(V,E) with n=|V| and m=|E|, and an integer value kgeq 1, there is an algorithm that computes in O(2^{k}n log^2 n) time for any set F of size at most k the strongly connected components of the graph GF. The running time of our algorithm is almost optimal since the time for outputting the SCCs of GF is at least Omega(n). The algorithm uses a data structure that is computed in a preprocessing phase in polynomial time and is of size O(2^{k} n^2). Our result is obtained using a new observation on the relation between strongly connected components (SCCs) and reachability...
Abstract. We study the problem of determining strongly connected compo-nents (Sccs) of directed hype...
We present randomized algorithms with a total update time of Õ(m √n) for the problems of decremental...
AbstractIn this paper, we consider the problems of co-biconnectivity and strong co-connectivity, i.e...
We consider maintaining strongly connected components (SCCs) of a directed graph subject to edge ins...
International audienceIn this paper, we present new incremental algorithms for maintaining data stru...
A strongly connected component (SCC) is a maximal subgraph of a directed graph G in which every pair...
Let G be a directed graph (digraph) with m edges and n vertices, and let G n e (resp., G n v) be the...
Strongly connected components of a directed graph can be found in an optimal linear time, by algorit...
Abstract. This paper presents the method of a parallel implementation of Tarjan’s algorithm that sol...
Large, complex graphs are increasingly used to represent unstructured data in scientific application...
Strongly connected components of a directed graph can be found in an optimal linear time, by algori...
The main advantages of Tarjan's strongly connected component (SCC) algorithm are its linear time com...
Abstract In this paper, we consider the problems of computing the strongly connected components and ...
The main advantages of Tarjan's strongly connected component (SCC) algorithm are its linear time com...
We introduce a new dynamic data structure for maintaining the strongly connected components (SCCs) o...
Abstract. We study the problem of determining strongly connected compo-nents (Sccs) of directed hype...
We present randomized algorithms with a total update time of Õ(m √n) for the problems of decremental...
AbstractIn this paper, we consider the problems of co-biconnectivity and strong co-connectivity, i.e...
We consider maintaining strongly connected components (SCCs) of a directed graph subject to edge ins...
International audienceIn this paper, we present new incremental algorithms for maintaining data stru...
A strongly connected component (SCC) is a maximal subgraph of a directed graph G in which every pair...
Let G be a directed graph (digraph) with m edges and n vertices, and let G n e (resp., G n v) be the...
Strongly connected components of a directed graph can be found in an optimal linear time, by algorit...
Abstract. This paper presents the method of a parallel implementation of Tarjan’s algorithm that sol...
Large, complex graphs are increasingly used to represent unstructured data in scientific application...
Strongly connected components of a directed graph can be found in an optimal linear time, by algori...
The main advantages of Tarjan's strongly connected component (SCC) algorithm are its linear time com...
Abstract In this paper, we consider the problems of computing the strongly connected components and ...
The main advantages of Tarjan's strongly connected component (SCC) algorithm are its linear time com...
We introduce a new dynamic data structure for maintaining the strongly connected components (SCCs) o...
Abstract. We study the problem of determining strongly connected compo-nents (Sccs) of directed hype...
We present randomized algorithms with a total update time of Õ(m √n) for the problems of decremental...
AbstractIn this paper, we consider the problems of co-biconnectivity and strong co-connectivity, i.e...