We study the complexity of approximate counting Constraint Satisfaction Problems (#CSPs) in a bounded degree setting. Specifically, given a Boolean constraint language Gamma and a degree bound Delta, we study the complexity of #CSP_Delta(Gamma), which is the problem of counting satisfying assignments to CSP instances with constraints from Gamma and whose variables can appear at most Delta times. Our main result shows that: (i) if every function in Gamma is affine, then #CSP_Delta(Gamma) is in FP for all Delta, (ii) otherwise, if every function in Gamma is in a class called IM_2, then for all sufficiently large Delta, #CSP_Delta(Gamma) is equivalent under approximation-preserving (AP) reductions to the counting problem #BIS (the problem of c...