International audienceWe propose a novel methodology for the detection and analysis of visual anomalies on challenging surfaces (metallic). The method is based on a local assessment of the reflectance across the inspected surface, using Reflectance Transformation Imaging data: a set of luminance images captured by a fixed camera while varying light spatial positions. The reflectance, in each pixel, is modelled by means of a projection of the measured luminances onto a basis of geometric functions, in this case, the Discrete Modal Decomposition (DMD) basis. However, a robust detection and analysis of surface visual anomalies requires that the method must not be affected neither by the geometry (sensor and surface orientation) nor by the text...