In this paper, the dynamic model of the Thomas-K biped robot, which was built at Ohnishi laboratory in Keio University, is derived, and a new efficient dynamic simulator is proposed. Although the dynamic model of bipedal locomotion is considered in this paper, the proposed model can be easily implemented any kind of floating point base robotic systems, such as mobile robots, space robots and so on. The Thomas-K biped robot has totally 16-degrees of freedom, in which 10 degrees of freedom can be controlled directly. Therefore, it is not an easy task to derive the conventional closed form dynamic model of the Thomas-K. Firstly, it is derived by using a Newton-Euler algorithm which is conventionally used to derive the dynamic models of biped r...