Cluster analysis is a method of grouping data (object) that are based on information that found in the data which describes the object and relation within. Cluster analysis aims to make the joined objects in the cluster are identical (or related) with one another and different (not related) to objects in another cluster. In this study used two method of grouping; Fuzzy C-Means and K-Means Clustering. The data used in this research had been using 357 corporate bonds data on December 1st, 2015. The variables used in this study consist of coupon rate, time to maturity, yield and rating of each corporate. The determination of the number of optimum clusters performed by Xie Beni index of validity calculation at FCM method. Having obtained the o...
Penelitian Ini Membahas Penerapan Algoritma Fuzzy C-Means (Fcm) Dalam Pengelompokkan Data Tingkat...
Fuzzy C-Means (FCM) merupakan salah satu metode clustering yang memungkinkan satu bagian data menjad...
AbstractCluster analysis can be defined as identifying groups of similar objects to discover distrib...
Clustering as a method of grouping objects into some cluster is very important in pattern recogniti...
The performance of each algorithm is very important, as well as the selection of a thesis topic for ...
Penelitian ini menggunakan analisis cluster k-means, k-medoid, dan fuzzy c-means untuk mengetahui ha...
INDONESIA : Pada metode cluster non-hirarki terdapat beberapa algoritma clustering data, diantara...
ABSTRAKSI: Pada saat ini volume informasi pelanggan yang dimiliki oleh perusahaan semakin meningkat....
INDONESIA: Analisis cluster secara konvensional merupakan sebuah cabang ilmu statistik analisis m...
Cluster analysis is an analysis that aims to classify data based on the similarity of specific chara...
Segmentasi data merupakan suatu proses pengelompokan data yang semula berperilaku berbeda-beda men...
Persaingan usaha yang ketat dewasa ini mengharuskan perusahaan untuk berfokus kepada kebutuhan yang ...
Cluster analysis is a data exploration method uses to obtain hidden characteristics by forming data ...
There are many methods used in resolving data clustering. One of them is the Fuzzy C-Means (FCM) met...
Cluster analysis is a data exploration method uses to obtain hidden characteristics by forming data ...
Penelitian Ini Membahas Penerapan Algoritma Fuzzy C-Means (Fcm) Dalam Pengelompokkan Data Tingkat...
Fuzzy C-Means (FCM) merupakan salah satu metode clustering yang memungkinkan satu bagian data menjad...
AbstractCluster analysis can be defined as identifying groups of similar objects to discover distrib...
Clustering as a method of grouping objects into some cluster is very important in pattern recogniti...
The performance of each algorithm is very important, as well as the selection of a thesis topic for ...
Penelitian ini menggunakan analisis cluster k-means, k-medoid, dan fuzzy c-means untuk mengetahui ha...
INDONESIA : Pada metode cluster non-hirarki terdapat beberapa algoritma clustering data, diantara...
ABSTRAKSI: Pada saat ini volume informasi pelanggan yang dimiliki oleh perusahaan semakin meningkat....
INDONESIA: Analisis cluster secara konvensional merupakan sebuah cabang ilmu statistik analisis m...
Cluster analysis is an analysis that aims to classify data based on the similarity of specific chara...
Segmentasi data merupakan suatu proses pengelompokan data yang semula berperilaku berbeda-beda men...
Persaingan usaha yang ketat dewasa ini mengharuskan perusahaan untuk berfokus kepada kebutuhan yang ...
Cluster analysis is a data exploration method uses to obtain hidden characteristics by forming data ...
There are many methods used in resolving data clustering. One of them is the Fuzzy C-Means (FCM) met...
Cluster analysis is a data exploration method uses to obtain hidden characteristics by forming data ...
Penelitian Ini Membahas Penerapan Algoritma Fuzzy C-Means (Fcm) Dalam Pengelompokkan Data Tingkat...
Fuzzy C-Means (FCM) merupakan salah satu metode clustering yang memungkinkan satu bagian data menjad...
AbstractCluster analysis can be defined as identifying groups of similar objects to discover distrib...