We focus on the problem of link prediction in Knowledge Graphs, with the goal of discovering new facts. To this purpose, Energy-Based Models for Knowledge Graphs that embed entities and relations in continuous vector spaces have been largely used. The main limitation in their applicability lies in the parameter learning phase, which may require a large amount of time for converging to optimal solutions. In this article, we first propose an unified view on different Energy-Based Embedding Models. Hence, for improving the model training phase, we propose the adoption of adaptive learning rates. We show that, by adopting adaptive learning rates during training, we can improve the efficiency of the parameter learning process by an order of magn...