Given an event log describing observed behaviour, process discovery aims to find a process model that ‘best’ describes this behaviour. A large variety of process discovery algorithms has been proposed. However, no existing algorithm returns a sound model in all cases (free of deadlocks and other anomalies), handles infrequent behaviour well and finishes quickly. We present a technique able to cope with infrequent behaviour and large event logs, while ensuring soundness. The technique has been implemented in ProM and we compare the technique with existing approaches in terms of quality and performance. © Springer International Publishing Switzerland 2014